Kosten­sparend & zukunfts­weisend


Produkte

Übersicht


Einsatzstahl

z.B.: 16/20MnCr(S)5; 18CrNiMo7-6; 15NiCr13, 20NiCrMo2-2; 18CrNi8; 20MoCr4; 39NiCrMo3; C15R
Mehr Informationen

Zu den Einsatzstählen gehören die unlegierten und niedriglegierten Stähle. Sie haben einen Kohlenstoffgehalt von 0,10 % bis 0,20 %. Da Einsatzstähle zu wenig Kohlenstoff aufweisen, um beim martensitischen Härten nennenswerte Festigkeitssteigerungen zu erzeugen, werden diese in eine kohlenstoffhaltige Atmosphäre „eingesetzt“ (Einsatzhärten) und hierzu auf Temperaturen zwischen 880 °C und 1050 °C erhitzt („geglüht“). Das kohlenstoffhaltige Mittel wird in einem festen, flüssigen oder gasförmigen Aggregatzustand zugesetzt. Bei den hohen Temperaturen diffundiert der Kohlenstoff von außen in die Randschicht des Stahls ein (je nach Aufkohlungsmittel 0,1–0,3 mm je Stunde, stark abhängig von der Temperatur) und erhöht den Kohlenstoffanteil der Randschicht auf etwa 0,8 %, so dass die Härtung an der Oberfläche des Bauteils effektiver wird als im Inneren. Das Ergebnis ist ein Bauteil, das im Inneren eine hohe Zähigkeit und auf der Oberfläche erheblich größere Härte und somit eine hohe Widerstandsfähigkeit gegen Verschleiß aufweist.

Anwendung findet Einsatzstahl unter anderem bei Zahnrädern, Wellen und Bolzen.


Vergütungsstahl

z.B.: 42CrMo4; 34CrNiMo6; 30CrNiMo8; 25CrMo4; 34CrMo4, 50CrMo4; 41Cr4, 58CrMoV4
Mehr Informationen

Vergütungsstahl ist Stahl, der durch Vergüten (= Härten und Anlassen) hohe Zug- und Dauerfestigkeit erhält. Die Zähigkeit wird bestimmt durch das Verhältnis von Härte (abhängig von Material, gewählter Härtetemperatur und gewählter Abschreckgeschwindigkeit) und Temperatur des folgenden Anlassvorganges. Es handelt sich um eine Umwandlungshärtung in der gezielt auf das Verhältnis von Festigkeit zu Zähigkeit Einfluss genommen wird.

Der Kohlenstoffgehalt liegt etwa zwischen 0,2 und 0,65 %. Die unterschiedlichen Legierungsgehalte von Chrom, Mangan, Molybdän und Nickel werden sehr exakt auf den jeweiligen Verwendungszweck abgestimmt und haben besonderen Einfluss bei größeren Querschnitten. Die Härtbarkeit von Stählen wird unter anderem mit dem Stirnabschreckversuch nach Jominy ermittelt.

(Vergütungsstähle; siehe DIN EN 10083)


Nitrier-, Walzläger und Borstahl

z.B.: 31CrMoV9; 34CrAlNi7; 100Cr6; 100CrMo7-3; 32CrB4; 36CrB4; 27MnCrB5-2; 32MnCrB5-2; 30MnB4; 30MnB5

Automatenstahl

z.B.: 11SMn30; 11SMnPb30; 46S20; 35S20; 44SMnPb28
Mehr Informationen

Ein Automatenstahl ist ein Stahl, der für die spanenden Fertigungsverfahren Drehen und Bohren (ununterbrochener Schnitt) auf automatisierten Werkzeugmaschinen optimiert ist. Durch Legieren mit Phosphor oder Schwefel bilden sich spröde Einschlüsse, an denen die Späne brechen können.

Durch Legieren mit Blei entstehen feinverteilte heterogene Bleieinschlüsse im Stahl, an denen die Späne brechen können. Automatenstähle für sehr hohe Schnittgeschwindigkeiten werden mit Blei legiert. Da während des Legierens aus der Schmelze toxische Bleidämpfe frei werden, muss eine besondere Ausrüstung des Stahlwerks zum Absaugen und Abscheiden der Dämpfe eingesetzt werden. Deshalb werden bleilegierte Automatenstähle nicht mehr in großen Mengen hergestellt. Durch Legieren mit Schwefel (0,08 %–0,4 %) und Mangan (0,7 %–1,7 %) können ähnliche Eigenschaften eingestellt werden wie mit der Bleilegierung. Durch den Schwefelzusatz entstehen weiche, zeilenförmig ausgeprägte Mangansulfideinschlüsse im Stahl, an denen die Späne brechen. Verwendet werden Automatenstähle hauptsächlich in der Serienfertigung auf Drehautomaten und kombinierten Bearbeitungszentren.

Die wichtigsten Automatenstähle sind in der DIN 1651 / EN 10087 bzw. EN 10277-3 aufgeführt.


Rostfreier Stahl

z.B.: 1.4301; 1.4305; 1.4404; 1.4104; 1.4021; 1.4034; 1.4122; 1.4112; 1.4057; 1.4418; 1.4462;
Mehr Informationen

Nichtrostender („rostfreier“) Stahl zeichnet sich durch einen Anteil von mehr als 10,5 Prozent Chrom[4] aus, der im austenitischen oder ferritischen Mischkristall gelöst sein muss. Durch diesen hohen Chromanteil bildet sich eine schützende und dichte Passivschicht aus Chromoxid an der Werkstoffoberfläche aus. Diese Passivschicht kann nach Spezialbehandlung gleichzeitig zur Färbung der Stahloberfläche eingesetzt werden.[5] Weitere Legierungsbestandteile wie Nickel, Molybdän, Mangan und Niob führen zu einer noch besseren Korrosionsbeständigkeit oder günstigeren mechanischen Eigenschaften. Da Chrom als Legierungselement preisgünstiger ist als Nickel, wird ein höherer Chromanteil bei kleinerem Nickelanteil (gleiche Korrosionsbeständigkeit vorausgesetzt) bevorzugt.


Werkzeugstahl

z.B.: 1.2311; 1,2312; 1.2379; 1.2343; 1.2344; 1.2714; 1.2080

Mehr Informationen

Unlegierte Werkzeugstähle:

Der Kohlenstoffanteil unlegierter Werkzeugstähle liegt zwischen 0,5 % und 1,5 %, oft sind noch geringe Mengen Wolfram enthalten. Durch eine Vergütung wird ihre Oberflächenhärte drastisch erhöht, die Aufhärtbarkeit ist dabei im Wesentlichen vom Kohlenstoffgehalt des Stahls abhängig. Allerdings sind unlegierte Werkzeugstähle nicht durchhärtbar (große kritische Abkühlgeschwindigkeit) und auch nicht für hohe Betriebstemperaturen geeignet, da schon bei ca. 200 °C der temperaturbedingte Härteabfall eintritt. Deswegen fallen die unlegierten Werkzeugstähle in die Kategorie Kaltarbeitsstahl.

Hergestellt werden aus diesem Stahl einfache Schneidplatten und Stempel sowie Zieh- und Biegewerkzeuge.

Beispiele: C85W1 → Werkzeugstahl, Güteklasse 1; C85W2 → Werkzeugstahl, Güteklasse 2

Legierte Werkzeugstähle:

Legierte Werkzeugstähle werden in höher beanspruchten Werkzeugen eingesetzt und sind meistens durchhärtbar. Zudem verziehen sie sich beim Härten nicht so sehr, je nach dem welche Legierungselemente vorhanden sind. Diese sind oft Chrom, Vanadium, Mangan, Molybdän, Nickel, Wolfram und Kobalt.

Man unterscheidet Kaltarbeitsstahl (Betriebstemperatur bis 200 °C), Warmarbeitsstahl (Betriebstemperatur bis 400 °C) und Schnellarbeitsstahl (Betriebstemperatur bis 600 °C).